
SENSORIS Interface Architecture

SENSORIS Innovation Platform hosted by ERTICO - ITS Europe

Version 1.4.0

Table of Contents

1. Introduction . 1

2. Interface Architecture . 3

2.1. Reference Systems . 3

2.2. Message Encoding. 5

2.3. Conventions . 8

2.4. Data Message Content . 9

2.5. Job Request Message Content . 13

2.6. Job Status Message Content. 16

3. Privacy Handling . 18

Glossary . 20

1. Introduction

The Sensor Interface Specification (SENSORIS) defines an interface for requesting and sending vehicle sensor

data from vehicles to clouds and across clouds. The specification and its standardization focus on the content

and encoding of the interface.

SENSORIS differentiates between three actor roles, which are shown in Figure 1. A vehicle is part of a vehicle

fleet. The vehicles of a vehicle fleet communicate with a vehicle cloud. A vehicle cloud can also communicate

with a service cloud. Vehicle fleet, vehicle cloud, and service cloud are actor roles. A cloud instance can have

both the role of a vehicle cloud and a service cloud. However, if a cloud instance has only the role of a service

cloud, then it cannot communicate with a vehicle fleet. An example setup could be that vehicles of an OEM

vehicle fleet communicate with their OEM vehicle cloud. The OEM vehicle cloud in turn communicates also to

the service cloud of a map maker.

Vehicle
Fleet

Data
Job Request

Job Status

Job Request
Job Status

Data

Service Cloud

Vehicle Cloud

Figure 1. Actor roles and interface

The interface of SENSORIS defines content and encoding of the messages that are communicated between

the actor roles. Data messages contain vehicle sensor data. Data messages communicated from one vehicle

of a vehicle fleet to its vehicle cloud contain sensor data from the one vehicle. Data messages communicated

from a vehicle cloud to a service cloud contain data from individual vehicles or aggregated data from several

vehicles of a vehicle fleet. Job request messages contain jobs defining which vehicle sensor data is requested

under which conditions and when the data shall be communicated to the requesting cloud. Job status

messages contain information about termination of jobs. Job status messages communicated from a vehicle

of a vehicle fleet to its vehicle cloud or from a vehicle cloud to a service cloud contain the reason of the

termination of the job in the vehicle or vehicle cloud. Job status messages communicated from a service cloud

to a vehicle cloud or from a vehicle cloud to a vehicle of a vehicle fleet request the termination of the job.

SENSORIS is not limited to just one instance of each actor role as shown in Figure 1, but is designed for cross-

collaboration in a setup with multiple actor roles as shown in Figure 2. A vehicle cloud can communicate with

an arbitrary number of vehicle fleets. A service cloud can communicate with other service and vehicle clouds.

For all communication channels the interface contains job request, job status, and data message types.

SENSORIS Interface Architecture 1.4.0

Copyright © 2017, 2022 SENSORIS Innovation Platform hosted by ERTICO - ITS Europe. This work is licensed under a Creative Commons
Attribution-NoDerivatives 4.0 International License - https://creativecommons.org/licenses/by-nd/4.0/legalcode.

1

Vehicle
Fleet

Data
Job Request

Job Status

Job Request
Job Status

Data

Service Cloud

Vehicle Cloud

Vehicle
Fleet B.2

Service Cloud B

Vehicle
Fleet B.1

Vehicle Cloud B

Job Request

Data

Job Status

Figure 2. Multiple actor roles and interface

The SENSORIS interface covers a wide range of vehicle sensors from Standard Definition (SD), over High

Definition (HD), to Automated Driving (AD) as shown in Figure 3. The large variety in quantity and quality of

sensors enable use and reuse of vehicle sensor data for a multitude of use cases.

SD
Standard Definition
E.g. video, GPS,
gyro, odometry

HD
High Definition
E.g. video, RADAR,
ultrasonic, GPS,
gyro, odometry,
SD map

AD
Automated Driving
360°, e.g. video,
RADAR, LIDAR, ultra-
sonic, DGPS, gyros,
odometry, HD map

Figure 3. Range of vehicle sensors from SD, over HD, to AD

This document defines the interface architecture of SENSORIS. Aspects that shall be taken into account for

defining the reference implementation architecture are also described in this document.

The architecture definition is structured as follows. In Chapter 2 the interface architecture view on content

and encoding of SENSORIS messages is described. The document concludes with a Glossary.

1.4.0 SENSORIS Interface Architecture

2 Copyright © 2017, 2022 SENSORIS Innovation Platform hosted by ERTICO - ITS Europe. This work is licensed under a Creative Commons
Attribution-NoDerivatives 4.0 International License - https://creativecommons.org/licenses/by-nd/4.0/legalcode.

2. Interface Architecture

The interface architecture is purely limited to content and encoding of the SENSORIS interface. This

limitation serves two purposes. The first purpose is to allow for a large variety of implementations. The

SENSORIS interface shall be e.g. irrespective of the communication channel used, may it be already available

technology to retrofit vehicle fleets being already in the field, state-of-the-art technology to roll out on

vehicle fleets in production, or next generation technology for research. The second purpose of the limitation

is to reduce time to standardization, as requirements for implementation sometimes differ significantly.

The sections in this chapter build on each other. Standardized reference systems used in SENSORIS are

described in Section 2.1. SENSORIS message encoding in Section 2.2 details the binary encoding and its

cross-platform compatibility. Conventions concerning versioning and naming are listed in Section 2.3. Section

2.4, Section 2.5, and Section 2.6 describe the schema skeleton based on interface requirements for data

messages, job request messages, and job status messages respectively.

2.1. Reference Systems

SENSORIS uses standardized reference systems, namely International System of Units, Coordinated

Universal Time, World Geodetic System 1984, and reference frames in road vehicle dynamics.

The International System of Units (SI) is the most important system of units of measurement. It is defined in

the SI Brochure, which is published by the Bureau International des Poids et Mesures (BIPM).[1] A product of a

number and a unit expresses the value of a quantity. The SI base quantities and base units used in SENSORIS

are listed in Table 1. Derived SI units are products of powers of base units. The derived SI units used in

SENSORIS are also listed in Table 1. Besides the SI units also non-SI units are accepted for use with SI. These

non-SI units used in SENSORIS are also listed in Table 1.

Type Quantity name Unit name Unit symbol

Base Length Metre m

Mass Kilogram kg

Time, duration Second s

Electric current Ampere A

Derived Frequency Hertz Hz

Pressure, stress Pascal Pa

Power, radiant flux Watt W

Electric charge, amount of electricity coulomb C

Electrical potential difference, electromotive force volt V

Celsius temperature degree Celsius °C

Non-SI Time minute min

hour h

day d

Plane angle degree °

Volume litre l

Table 1. SI base/SI derived/non-SI quantities and units used in SENSORIS

SI also defines prefix names and prefix symbols that express decimal multiples and submultiples for SI units.

SENSORIS Interface Architecture 1.4.0

Copyright © 2017, 2022 SENSORIS Innovation Platform hosted by ERTICO - ITS Europe. This work is licensed under a Creative Commons
Attribution-NoDerivatives 4.0 International License - https://creativecommons.org/licenses/by-nd/4.0/legalcode.

3

The prefixes used in SENSORIS are listed in Table 2.

Factor Name Symbol

10-3 milli m

10-6 micro µ

103 kilo k

Table 2. SI prefix names and prefix symbols used in SENSORIS

SI also states that the value of dimensionless quantities may be expressed by the symbol % (percent) to

represent the number 0.01.

Table 1 and Table 2 should not be considered complete.

The Coordinated Universal Time (UTC) is the most important time standard. Neither time zones nor daylight

savings time are considered for UTC. Leap seconds are inserted at irregular intervals to keep UTC aligned to

rotation of Earth. SENSORIS is based on UTC as reference, but omits leap seconds.

The World Geodetic System 1984 (WGS84) is the best known geodetic reference system and is used in

cartography, geodesy, and navigation. The WGS84 standard defines coordinate system, reference ellipsoid,

and geoid for positions on Earth. Positions are commonly expressed in a geographic coordinate system as

longitude (east/west) and latitude (south/north) in degree for the horizontal position and as altitude or

elevation (height) in metre for the vertical position. Longitude is zero degrees at the International Reference

Meridian, which is located near the Greenwich meridian. Latitude is zero degrees at the equator. Altitude is

zero meters on the WGS84 reference ellipsoid. Elevation is derived from altitude and refers to the Earth

Gravitational Model 1996 (EGM96) as geoid, which defines the nominal sea level surface. Positions in

SENSORIS are given as longitude, latitude, and altitude, i.e. giving the height as elevation is explicitly not

allowed. This allows for a consistent derivation of elevation values in the cloud irrespective of the actual

derivation in the respective vehicle sensors.

The International Organization for Standardization (ISO) standard 8855:20112 defines the principal terms

used for road vehicle dynamics.[2] These terms are used to specify the SENSORIS vehicle coordinate system.

A vehicle coordinate system is defined by the ISO standard as combination of vehicle reference point and

vehicle axis system. The vehicle reference point is the origin of the vehicle coordinate system. In SENSORIS

the vehicle reference point is located by convention in the middle of the rear axis. The vehicle axis system of

SENSORIS is right-handed and has a longitudinal x, lateral y, and vertical z axis. The longitudinal x axis points

horizontally to the front of the vehicle. The lateral y axis points to the left of the vehicle. The vertical z axis

points opposite to the gravitation vector to the top of the vehicle. The x, y, and z axis form an orthogonal axis

system. The rotation around the longitudinal x axis is defined by the roll angle, around the lateral y axis by the

pitch angle, and around the vertical z axis by the yaw angle. With the exception of GNSS sensor data, all

measurements of sensors are transformed from their sensor coordinate system to the SENSORIS vehicle

coordinate system based on proper calibration of the sensors. The reference point of the GNSS sensor data is

given as a 3D translation to the SENSORIS vehicle reference point. For vehicles with trailers only the towing

vehicle is considered in the SENSORIS vehicle coordinate system.

In addition to the SENSORIS vehicle coordinate system the length, width, and height of the vehicle are

specified with a total of six values in positive and negative direction of the x, y, and z axis respectively. These

measurements enable derivation of relative distances to the vehicle frame, e.g. of the relative distance

1.4.0 SENSORIS Interface Architecture

4 Copyright © 2017, 2022 SENSORIS Innovation Platform hosted by ERTICO - ITS Europe. This work is licensed under a Creative Commons
Attribution-NoDerivatives 4.0 International License - https://creativecommons.org/licenses/by-nd/4.0/legalcode.

between an obstacle and the vehicle front bumper from the absolute distance between the vehicle reference

point and the same obstacle.

2.2. Message Encoding

SENSORIS job request, job status, and data messages are communicated between the three actor roles

vehicle fleet, vehicle cloud, and service cloud. The SENSORIS messages have to be encoded for over-the-air

and over-the-wire communication channels, i.e. they have to be serialized by the sender prior to

communication and then have to be deserialized by the receiver.

Message encoding has to fulfil several requirements. Over-the-air communication channels are normally

limited in bandwidth and communication costs have to be considered. A small difference in data size over a

fleet of several million vehicles sums up quickly to a large difference in overall data size. Therefore the size of

serialized data shall be minimized by choosing a compact data serialization format. The two environments

vehicle and cloud differ significantly regarding resources, operating systems, and programming languages

used for software implementation. Resources in a vehicle are limited and expensive, namely processor

performance and size of memory. Programs are usually implemented in C/C++ and run on top of a UNIX

based operating system. In contrast, resources in a cloud environment are easily available. A UNIX based

operating system is also often used in clouds. Programs are implemented in a variety of languages, e.g. Java,

Python, JavaScript, and C++. The differences between the vehicle and cloud environments result in the

requirement that data serialization shall be able to cope with a variety of resource sets, operating systems,

and programming languages. For keeping licencing fees for message encoding at zero cost, data serialization

shall use a library with a permissive license, e.g. Apache Licence version 2.

Additional requirements regarding message content also have to be fulfilled by SENSORIS message encoding.

Encoding shall support evolution of the data format, i.e. adding new data types or fields shall be backward

compatible so that the new data format can be read by both new code and code generated for previous

versions of the data format. For textual data types it shall be ensured that internationalization is covered by

the data serialization format, i.e. text in different languages can be encoded. The encoder also shall support

null values, i.e. it shall be possible to explicitly not set a field value. Finally, the encoding shall allow for

proprietary extension of the data format, e.g. for prototyping or research purposes.

A large variety of data serialization formats is currently available.[3] Candidates for SENSORIS fulfilling the

listed requirements are Apache Avro, Apache Thrift, and Google Protocol Buffers. All of them provide an

Interface Description Language (IDL) in which the schema can be strictly typed. Data serialization results in a

compact byte array. The two Apache Projects have an Apache Licence version 2, whereas Google Protocol

Buffers has a BSD 3-Clause licence. All of them support evolution of the data format, internationalization, null

values, and the possibility to define propriety extensions. Google Protocol Buffers is used for SENSORIS as it

is the most commonly used of the three data formats and also has been used for the Vehicle Sensor Data

Cloud Ingestion Interface Specification published in 2015 by HERE.

Google Protocol Buffers (protobuf), are a language-neutral, platform-neutral, and extensible mechanism for

serializing structured data.[4] For SENSORIS, version 3 of the protobuf library is used, which adds a

streamlined approach for proprietary extensions. Using protobuf starts with defining a data schema as

protobuf message types, see Figure 4. Then the protobuf compiler is run with the data schema as input and

generates data access classes in one of the supported languages C++, Java, Python, Go, Ruby, C#, Objective

C, JavaScript, or PHP. The compiler is only run initially and on schema changes.

SENSORIS Interface Architecture 1.4.0

Copyright © 2017, 2022 SENSORIS Innovation Platform hosted by ERTICO - ITS Europe. This work is licensed under a Creative Commons
Attribution-NoDerivatives 4.0 International License - https://creativecommons.org/licenses/by-nd/4.0/legalcode.

5

Schema Compiler

Java data access classes

C++ data access classes

Figure 4. Protobuf schema, compiler, and auto-generated data classes

Usage of the auto-generated protobuf data access classes in the context of message encoding is shown in

Figure 5. The communication from a vehicle of a vehicle fleet to its vehicle cloud is used as example in the

following. On the vehicle the obtained sensor data is filled into the C++ data access classes. The class

instances are then serialized into a byte array by the also auto-generated C++ encoder. The serialized data is

transferred over-the-air to the vehicle cloud. There the auto-generated Java decoder deserializes the byte

array into Java class instances having the same schema and sensor data as the C++ class instances on the

vehicle.

C++ data C++ encoder Binary serialized data Java decoder Java data

Figure 5. Example protobuf workflow for message encoding

In SENSORIS the protobuf scalar value types int64, bool, string, and bytes are used. String supports UTF8

encoded text, which fulfils the requirement for internationalization. Unsigned integers are not used in

SENSORIS, as protobuf represents unsigned integers in Java by their signed counterparts, which may end up

in confusion during use of the data classes. Protobuf enumerations, nested types, and imports from other

schema files are also used in SENSORIS. The OneOf mechanism, which allows for a protobuf message with

several fields where at most one field is set at the same time, is also used. The protobuf Any message type

fulfils the requirement for proprietary extensions.[5] For a proprietary extension first the protobuf schema has

to be defined. Then data can be encoded as a byte array of type bytes using the extension format. Finally, an

Any message can be built which contains the encoded data and a type URL which acts as a globally unique

identifier for the proprietary extension. On deserialization protobuf reads the URL and then is able to unpack

the data from the byte array.

The requirement for null values is fulfilled by using protobuf wrapper message types.[6] These message types

wrap a non-nullable scalar value type, e.g. string, in a message type which is nullable.

Multiplier usage

For the multiplier usage the following glossary is defined:

• BaseType: The declaration of a message within the protobuf schema (e.g. message EventGroup {…}).

Similar to a class declaration in Java.

• Attribute field: the protobuf attribute declaration within a message of a primitive or complex datatype.

• AbsolutePath: an array of field numbers that are defining the path through the message structure starting

from the root baseType "DataMessages" by using the number of the attribute field within its message.

• AbsolutePathString: is the string representation of the path through the message structure defined by the

attribute field names starting from the root ("DataMessages") and separated by ":". Absolute Path and

PathString are interchangeable.

• Example:

◦ AbsolutePathString:

1.4.0 SENSORIS Interface Architecture

6 Copyright © 2017, 2022 SENSORIS Innovation Platform hosted by ERTICO - ITS Europe. This work is licensed under a Creative Commons
Attribution-NoDerivatives 4.0 International License - https://creativecommons.org/licenses/by-nd/4.0/legalcode.

▪ BaseType: sensoris.protobuf.messages.data.DataMessages

▪ "data_message:event_group:localization_category:vehicle_position_and_orientation:position_and_ac

curacy:metric_ecef"

◦ AbsolutePath: [2,2,2,2,2,4] is equivalent to above AbsolutePathString given the same baseType.

◦ baseType and attribute field: above AbsolutePathString and AbsolutePath point to the attribute_field

"metric_ecef" of the base type "sensoris.protobuf.types.spatial.PositionAndAccuracy.Metric"

Within SENSORIS, scalar values are overall exclusively represented by integer values of data type int64 with

an implicit exponent to the base of 10 as a factor realising a fixed decimal digit encoding. The encoding from a

measured value to an encoded value is done as: "encodedValue = measuredValue * 10exponent"

The exponent is provided either implicit through the protobuf schema or through an explicit override within a

message.

Implicit exponent declaration

The exponent may be defined for a single attribute_field of type int64 within a message, for which the

exponent is valid for any representation of that message type.

Exponent usage with simple attributes:

• Protobuf: Int64 value = 1 [(exponent) = 3]

• Measurement: measured_value = 123.456789

• Encoded: value = 123456

• Interpretation: real_value = 123.456

The exponent may also be used for an attribute field of a message type (e.g. Int64Value,

Int64ValueAndAccuracy, XyzVectorAndAccuracy…) for which the exponent is propagated towards the

attribute fields within the lower levels of the data structure.

Examples:

Exponent usage with complex data types:

• Protobuf: Int64ValueAndAccuracy attribute_n = 1 [(exponent) = 4]

• Measurements: attribute_n.measured_value 123.456789 with attribute_n.measured_accuracy 0.01

• Encoded: attribute_n.value 1234567 with attribute_n.accuracy 100

• Decoded: attribute_n.value 123.4567 with attribute_n.accuracy 0.01

In case of duplication, the lower level exponent (simple type) is overridden by the higher level exponent

(message type). For readability purpose, the exponent is also described with the comment "@resolution". In

case of conflict, the attribute option "exponent" is the reference value.

Explicit exponent declaration

Within one message, the implicit exponent can be overridden declaring one specific attribute to be encoded

with a different exponent.

The message type FieldResolutionOverride specifies:

SENSORIS Interface Architecture 1.4.0

Copyright © 2017, 2022 SENSORIS Innovation Platform hosted by ERTICO - ITS Europe. This work is licensed under a Creative Commons
Attribution-NoDerivatives 4.0 International License - https://creativecommons.org/licenses/by-nd/4.0/legalcode.

7

• A baseType, describing the message that shall be used as root message for the following NodeArray. If no

messageCode is provided, "DataMessages" is used as root message. Only one messageCode per

FieldResolutionOverride is allowed

• A NodeArray, describing the attribute with the root message described by the messageCode. A NodeArray

is mandatory.

• An exponent describing the exponent number. If no exponent is provided, the value 0 is used. Exponent =

0 results in "measured_value == encoded_value"

Examples:

• Content of one FieldResolutionOverride-Object

◦ messageCode: "sensoris.protobuf.types.spatial.PositionAndAccuracy.Metric"

◦ nodeArray: [1]

◦ exponent: 5

• Interpretation: The x-value (number 1) within any representation of the Metric PositionAndAccuracy

content in the protobuf message is encoded using 5 digits of accuracy. The value has to be divided by 105

to obtain the real value.

Based on bilateral sender-receiver agreement, the transported data size may be reduced by any state of the

art compression of the protobuf binary serialized data. Compression reduces the size of the encoded data,

but only above a certain size threshold. This threshold can be determined by tests with typical payloads.

Specification of a specific compression algorithm is out of scope of the SENSORIS architecture.

SENSORIS timestamps are based on UNIX time, which is also known as POSIX time. The SENSORIS

timestamp is encoded as number of milliseconds and fractions of milliseconds with microsecond resolution

since the date 1970-01-01T00:00:00Z UTC (see reference systems in Section 2.1). At a vehicle speed of 50

m/s, i.e. 180 km/h, the distance travelled within 1 millisecond is 5 centimetre. If a higher spatiotemporal

accuracy is required, then also the microsecond fraction of the SENSORIS timestamp can be used. The

timestamp is independent of time zones and daylights savings time. It assumes that all minutes are exactly 60

seconds long, i.e. leap seconds are omitted. Time must be derived in SENSORIS based on a monotonic clock.

It has to be assured that time never jumps, i.e. positions and time are continuous. Therefore automatic

adjustment of the clock based on e.g. Network Time Protocol (NTP) or phone network time is discouraged.

2.3. Conventions

SENSORIS uses conventions for its versioning scheme and for the naming of protobuf message, field, and

value names.

SENSORIS uses a sequence-based versioning scheme that denotes the degree of compatibility. The version is

defined by a triplet of integers in the format major.minor.patch, e.g. 1.2.4. All numbers start at zero and are

incremented by one. The first public release of SENSORIS has the fixed version 1.0.0. Handling of the

versioning scheme depends on the message encoding as defined in Section 2.2 and its abilities concerning

backward compatibility. The patch number is incremented for changes in documentation of the message

schema only. The minor number is incremented for backward compatible changes, i.e. for extension of the

message schema with new message types and fields. The major number is incremented for non-backward

compatible changes or if it is intended to indicate an important extension of the message schema.

1.4.0 SENSORIS Interface Architecture

8 Copyright © 2017, 2022 SENSORIS Innovation Platform hosted by ERTICO - ITS Europe. This work is licensed under a Creative Commons
Attribution-NoDerivatives 4.0 International License - https://creativecommons.org/licenses/by-nd/4.0/legalcode.

Deprecation of fields is handled in the schema as defined by the protobuf language, i.e. fields are marked with

the modifier [deprecated]. Protobuf message types are marked as deprecated as a SENSORIS convention in

their comment. In addition to marking fields or message types as deprecated also the version since the

deprecation was introduced and the version when a deprecated field or message type will be removed shall

be documented. If a deprecated field or message type is replaced by another field or message type then this

shall also be documented.

The naming convention used in SENSORIS defines how protobuf message, field, and value names are named

in the protobuf schema. It follows the Google Protocol Buffers style guide.[7] Message and enum type names

follow the upper camel case naming scheme, i.e. they start with an initial upper case letter and each word or

abbreviation in a compound name begins with a capital letter, e.g. VehiclePosition. Field names follow the

lower case underscore separator naming scheme, i.e. they consist only of lower case letters and words in a

compound name are separated by an underscore, e.g. ignition_on. Enum value names follow the capitals with

underscores naming scheme, i.e. they consist only of upper case letters and words in a compound name are

separated by an underscore, e.g. TURN_LEFT.

The documentation of the SENSORIS schema is part of the protobuf schema itself, i.e. schema definition and

documentation are located together. Documentation is written as protobuf comments. The comments in the

protobuf schema are taken over automatically to the auto-generated data classes by the protobuf compiler.

2.4. Data Message Content

The architectural parts of the SENSORIS data message are addressed in this section.

Identifiers that relate to privacy aspects are described in Section 2.4.1. Subsequently, identifiers that are used

for cross-referencing of events are detailed in Section 2.4.2. Identifiers that are used for referencing events of

a data message to corresponding job requests are described in Section 2.4.3. Attribute representation and

meta-attributes are listed in Section 2.4.4. Spatial reference systems used in data messages are described in

Section 2.4.5.

2.4.1. Identifiers

Several identifiers are used in a SENSORIS message which affect privacy. They allow for identification of a

submitter, session, message, vehicle fleet, vehicle, and driver. All identifiers are optional and are a powerful

and fine-grained control instrument for ensuring privacy aspects in SENSORIS.

The submitter is optional and defines the origin of messages. A submitter consists of a primary and secondary

id, type, software version, and hardware version which are all of type string.

The message identifier is optional and defines the order of messages. Message identifiers are of type integer

and begin with value 1 and are incremented by 1 on each generation of a message. If information sent from

one communication partner to another is split into messages, then each of the messages shall be self-

contained, i.e. if one of the messages is lost then the others still shall provide meaningful information.

The session identifier is optional and is used to mark messages of the same vehicle that belong together. A

new session can be created e.g. on engine start, for each navigation route, after a time threshold, or after

inactivity for a time threshold. Session identifiers are of type string and shall be globally unique for each

submitter. If the session identifier is set, then all messages of a session can be aligned in order of their

SENSORIS Interface Architecture 1.4.0

Copyright © 2017, 2022 SENSORIS Innovation Platform hosted by ERTICO - ITS Europe. This work is licensed under a Creative Commons
Attribution-NoDerivatives 4.0 International License - https://creativecommons.org/licenses/by-nd/4.0/legalcode.

9

generation. This rule also allows for identification of missing messages, e.g. if messages with identifiers 1, 2,

and 4 are communicated to the cloud, then the cloud can derive that message with identifier 3 is missing. It is

also possible to report the end of a session explicitly. This enables the cloud to perform processes that require

the complete session data in a timely manner.

Examples for the identifiers are shown in Figure 6. If only the message id is set as shown in the first example,

then each message starts with an identifier of value 1. For the cloud each received message is from a new

vehicle, illustrated as a different vehicle colour in Figure 6 (grey instead of black). It is therefore not possible

to track an individual vehicle in the cloud only based on message identifiers. The privacy level obtained with

message identifiers is anonymization.

The combination of message and session identifier is shown in the second example in Figure 6. Messages with

the same session identifier can be aligned in order and allow for processing messages from the same vehicle

that belong together. If a new session is started by a vehicle then for the cloud the messages from the new

session are from a new vehicle. It is therefore not possible to track an individual vehicle in the cloud only

based on message and session identifiers beyond the scope of a session. The privacy level obtained with

session identifiers is at best anonymization and at worst pseudonymization.

Driver ID = ‘D’
Vehicle ID = ‘V’
Session ID = ‘S’

Message ID = 1

Driver ID = ‘D’
Vehicle ID = ‘V’
Session ID = ‘S’

Message ID = 2

Driver ID = ‘D’
Vehicle ID = ‘V’
Session ID = ‘S’

Message ID = 3

Vehicle ID = ‘V’
Session ID = ‘S’

Message ID = 1

Vehicle ID = ‘V’
Session ID = ‘S’

Message ID = 2

Vehicle ID = ‘V’
Session ID = ‘S’

Message ID = 3

Session ID = ‘S’

Message ID = 1

Session ID = ‘S’

Message ID = 2

Session ID = ‘S’

Message ID = 3

Driver ID = ‘D’
Vehicle ID = ‘W’
Session ID = ‘T’

Message ID = 1

Vehicle ID = ‘V’
Session ID = ‘T’

Message ID = 1

Session ID = ‘T’

Message ID = 1

Traceable Not traceable

Figure 6. Identifiers and impact on privacy

The vehicle fleet identifier is optional and is used to mark messages of vehicles from the same vehicle fleet

over the lifetime of the vehicle fleet. Vehicle fleet identifiers are of type string and shall be globally unique for

each submitter.

The vehicle identifier is optional and is used to mark messages of the same vehicle over its lifetime. Vehicle

identifiers are of type string and shall be globally unique for each vehicle fleet. If the vehicle identifier is set,

then all messages of a vehicle can be aligned in order of their generation for the complete lifetime of the

vehicle. If a vehicle changes its owner, then it shall be considered to either change the vehicle identifier or to

reset all data from the vehicle.

The combination of message, session, and vehicle identifiers is shown in the third example in Figure 6.

Messages with the same vehicle identifier can be aligned in order and allow for processing messages from the

same vehicle across sessions and for its complete lifetime. The privacy level obtained with vehicle identifiers

is pseudonymization.

The driver identifier is optional and is used to mark messages from the same driver over its lifetime. Driver

identifiers are of type string and shall be globally unique for each submitter. If the driver identifier is set, then

all messages of a driver can be aligned in order of their generation for the complete lifetime of the driver and

1.4.0 SENSORIS Interface Architecture

10 Copyright © 2017, 2022 SENSORIS Innovation Platform hosted by ERTICO - ITS Europe. This work is licensed under a Creative Commons
Attribution-NoDerivatives 4.0 International License - https://creativecommons.org/licenses/by-nd/4.0/legalcode.

for all vehicles the driver has used.

The combination of message, session, vehicle, and driver identifiers is shown in the last example in Figure 6.

Messages with the same driver identifier can be aligned in order and allow for processing messages from the

same driver across all sessions of all used vehicles for its complete lifetime.

The scope on privacy is handled in Chapter 3.

2.4.2. Identifiers and Referencing

The second set of identifiers is used for cross-referencing events within a message. The order of events

within a message is not defined, so forward and backward references are possible. Events are message types

of SENSORIS data messages and contain vehicle sensor data.

The event identifier uniquely identifies an event within a message and is only required if a reference to the

event is needed. Event identifiers are of type integer and begin with value 1 and are incremented by 1.

The event relation protobuf message type enables binary relations between events within a single data

message.

The event group protobuf message type enables smart grouping of events based on the same relative spatial

reference system.

The event source protobuf message type enables to define the source of a value or an event, via its event

identifier.

Some event protobuf message types contain an object identifier which enables referencing between

individual events over time. For example, as part of the object detection category the same movable object

can be referenced over time by its unique object identifier.

2.4.3. Identifiers and Job Requests

The third set of identifiers is used for referencing the events of a data message to the corresponding job

request messages (see Section 2.5).

The set of job request identifiers of a data message is used to link all events of a data message to the job

requests that led to the observation of the events. If a separation of events observed for different jobs is

required, then several data messages with events for one job request each can be used.

2.4.4. Attribute Representation and Meta-Attributes

Some attribute types and meta-attributes require modelling of protobuf message types beyond the protobuf

scalar value types (see Section 2.2).

The histogram protobuf message types enable modelling of histograms with arbitrary sized bins and absolute

or relative frequencies. For each of the protobuf scalar value types int64, bool, and string an own protobuf

message type is defined. Bin endpoints are modelled with minimal number of fields, i.e. each bin defines only

its lower endpoint inclusive value. The upper endpoint inclusive value is defined only for the histogram

leading to a collection of bins with value ranges [bin lower endpoint inclusive, next bin lower endpoint

SENSORIS Interface Architecture 1.4.0

Copyright © 2017, 2022 SENSORIS Innovation Platform hosted by ERTICO - ITS Europe. This work is licensed under a Creative Commons
Attribution-NoDerivatives 4.0 International License - https://creativecommons.org/licenses/by-nd/4.0/legalcode.

11

exclusive) with the last bin range [last bin lower endpoint inclusive, upper endpoint inclusive].

Every enum field which represents a classification with potential uncertainty is wrapped into a message with a

confidence value. The confidence is an integer value in percent with range [0, 100].

All sensor observations, confidence values, and accuracy values are only relatively comparable to values of

the same vehicle, and then only if all parameters of the complete system remain constant. The derivation of

sensor observations, confidence values, and accuracy values in a vehicle, in a vehicle cloud, or in a service

cloud may differ e.g. based on sensor hardware, sensor software, environment, or cloud software. SENSORIS

explicitly does not cover any alignment of their derivation among different parties.

Relations between events and event source message denote if the event is based on single sensor

observations or sensor fusion.

2.4.5. Spatial Reference Systems

SENSORIS supports absolute and relative spatial reference systems. Absolute spatial reference systems

supported by SENSORIS are e.g. World Geodetic System 1984 (WGS84) as described in Section 2.1.

Relative spatial reference systems have a defined origin given in a global spatial reference system. The origin

defines the 3D rotation and 3D translation of the relative spatial reference system to the global spatial

reference system. The relative position of events to their origin is given in metric distances in x, y, and z axis.

Several relative spatial reference systems may overlap and within one data message several relative spatial

reference systems may be used.

SENSORIS supports two types of relative spatial reference systems. The first type is the SENSORIS vehicle

coordinate system as defined in Section 2.1. The relative position of events to their origin can be given by

different reference types, which are shown exemplarily in Figure 7. The figure shows a 2D view of the relative

spatial coordinate systems. The origin of the SENSORIS vehicle coordinate system is the position P of the

vehicle at a timestamp t. In the example, the relative position of a road sign event S at timestamp t to its origin

is then given in metric distances on the x and y axis. The different reference types that are possible are

described in Table 3.

P1@t1

S1@t1

x

y

Equal timestamp

P2@t2

S2@t3,

ref P2@t2

x

y

Event reference

P5@t6

P3@t4

Interpolation

S3@t5

x

x

y

y

y

x

y lateral

x longitudinal

P@t

Vehicle coord. system

Figure 7. Example for SENSORIS vehicle coordinate system as relative spatial reference system

Reference type Description

Equal

timestamp

Position P1 and sign S1 share the same timestamp t1, therefore the metric distances given for the sign

S1 are related to the position P1 as their origin, reference is implicit

Event reference Position P2 and sign S2 have different timestamps, therefore the reference of the sign to the position

has to be explicitly set with an event reference as defined in Section 2.4.2

1.4.0 SENSORIS Interface Architecture

12 Copyright © 2017, 2022 SENSORIS Innovation Platform hosted by ERTICO - ITS Europe. This work is licensed under a Creative Commons
Attribution-NoDerivatives 4.0 International License - https://creativecommons.org/licenses/by-nd/4.0/legalcode.

Reference type Description

Interpolation Position P3, sign S3, and position P5 have different timestamps and no event reference is set,

therefore the origin of the relative spatial reference system for sign S3 has to be interpolated between

positions P3 and P5, interpolation possibly degrades position accuracy of sign S3

Table 3. Reference types for SENSORIS vehicle coordinate system as relative spatial reference system

The second type of relative spatial reference systems supported by SENSORIS is arbitrary relative spatial

reference systems. Arbitrary refers to the arbitrary position of the origin of the reference systems, which can

be different from vehicle positions. The relative position of events to their origin is shown exemplarily in

Figure 8. The relative position of events to their origin can be given by different reference types, which are

described in Table 4.

P1@t1

S1@t1

x

y

P2@t2

S2@t3,

ref P2@t2

x

y

P3@t4

S3@t4

x

y

Vehicle coord. systems Arbitrary relative spatial reference system,

origin O, either event reference or group

S1@t1

O

S2@t3
S3@t4

x

y y y

Figure 8. Example for arbitrary relative spatial reference system

Reference type Description

Event

reference

See reference type of SENSORIS vehicle coordinate system in Table 3

Event group Signs S1, S2, and S3 are explicitly put into the same event group as defined in Section 2.4.2, only one

origin per event group is allowed

Table 4. Reference types for arbitrary relative spatial reference system

2.5. Job Request Message Content

The architectural parts of the job request message are addressed in this section.

Job request identifiers and priorities are described in Section 2.5.1. Metadata is described in Section 2.5.2.

Section 2.5.3 describes the capability requirements. Overall restrictions are shortly detailed in Section 2.5.4;

whereas the validity restrictions are described in Section 2.5.5. The collection triggers are described in Section

2.5.6. Finally the actions that start when the collection triggers are met are described in Section 2.5.7.

2.5.1. Identifiers and Priorities

The submitter is optional and defines the origin of messages. A submitter consists of a primary and secondary

id, type, software version, and hardware version.

The job request identifier is required for all jobs and allows for linking the events of a data message to the

corresponding job requests (see also Section 2.4.3).

The job request priority is optional and defines the relative importance of job requests. The priority is a

numeric value in the range [1, 256], with 1 being the highest and 256 being the lowest priority. Vehicles of a

vehicle fleet or a vehicle cloud can use the priority as a hint of which job requests can be cancelled first. For

SENSORIS Interface Architecture 1.4.0

Copyright © 2017, 2022 SENSORIS Innovation Platform hosted by ERTICO - ITS Europe. This work is licensed under a Creative Commons
Attribution-NoDerivatives 4.0 International License - https://creativecommons.org/licenses/by-nd/4.0/legalcode.

13

example, when a vehicle is running out of resources, the vehicle may deactivate the jobs with lowest priority.

Job priorities are part of the job metadata described in Section 2.5.2.

The consolidation of job requests for a vehicle fleet is performed by the corresponding vehicle cloud. The

vehicle cloud consolidates both internal jobs and jobs from connected service clouds in terms of content and

priority. It may change and align priorities and combine job requests if they are compatible. A vehicle cloud

may also refuse jobs, e.g. due to sensor and resource availability in the vehicles of the vehicle fleet or based

on the contract with a service cloud.

An example for the consolidation of job requests is shown in Figure 9. The vehicle cloud consolidates the job

request from service cloud A asking for positions every five seconds and the job request from service cloud B

asking for positions every ten seconds. The two job requests are consolidated into one job request asking for

positions every five seconds. The events of the data messages sent from the vehicle fleet to the vehicle cloud

are then routed to the service clouds A and B, whereby service cloud A receives all position events and

service cloud B receives only every second position event.

Vehicle
Fleet

Data
Position 5 sec

Job Request
Position 5 sec

Vehicle Cloud

Service Cloud B

Job Request B
Position 10 sec

Job Request A
Position 5 sec

Service Cloud A

Data B
Position 10 sec

Data A
Position 5 sec

Figure 9. Example for consolidation of job requests by vehicle cloud

A vehicle cloud can also split job requests in different sub jobs for a vehicle fleet. The vehicle cloud may

receive a job from a connected service cloud. The vehicle cloud may decide to split before sending them to

the vehicles. The vehicle cloud may use any splitting methods as needed (for example, by area, time, or

others).

An example for the split of job requests is shown in Figure 10. The vehicle cloud split the job request from the

service cloud asking for vehicle data for certain city. The vehicle cloud splits this job in different sub jobs,

which correspond to a certain area of the city. Each sub job identifier is the result the concatenation of the

original job identifier with the corresponding sub job identifier. The events of the data messages sent from

the vehicle fleet to the vehicle cloud are then routed to the service cloud with the original job identifier.

1.4.0 SENSORIS Interface Architecture

14 Copyright © 2017, 2022 SENSORIS Innovation Platform hosted by ERTICO - ITS Europe. This work is licensed under a Creative Commons
Attribution-NoDerivatives 4.0 International License - https://creativecommons.org/licenses/by-nd/4.0/legalcode.

Job Request
job_id.1

Data
job_id.1

Job Request
job_id.2

Data
job_id.2

Vehicle
Fleet

Partition 2Partition 1

Job Request
job_id

Data
job_id

Service Cloud

Vehicle Cloud

Figure 10. Example for split of job requests by vehicle cloud

2.5.2. Metadata

The job metadata provides additional information about the requested data collection, such as job priority

(see also Section 2.5.1) or latency requirements for data submission. Job metadata can also provide

information if the data collection should take place if vehicles are in accessory mode off (for example, when

the vehicle is parked).

2.5.3. Capability Requirements

The job capability requirements provide data collectors the basic requirements they need to have in order to

interpret and fulfil a job request. These requirements refer to the data messages and extension versions that

the submitter of a job request is expecting to receive, and the job request version needed to interpret them.

2.5.4. Overall Restrictions

The job request overall restrictions contains the collection restrictions for the entire collection request as a

whole, from the service cloud point of view. These are: time restrictions, spatial restrictions and total

collection extents. For example, using the total collection extents, the service cloud may restrict the overall

number of data messages that is expecting to receive for a job request. The vehicle cloud shall ensure that

data messages transmitted to the service cloud do not exceed the specified restriction.

2.5.5. Validity Restrictions

The job validity restrictions define conditions under which a job request message is valid, meaning that data

collection shall be possible. If the validity restrictions are not met, data collection shall not happen. These

restrictions are: time restrictions, spatial restrictions, and map attribute restrictions.

• Time restrictions define the temporal conditions for the validity of a job request. These are weekday, date

range, and time of the day range.

• Spatial restrictions define spatial conditions for the validity of a job request. These can be circle, rectangle,

polygon, and directed corridor.

SENSORIS Interface Architecture 1.4.0

Copyright © 2017, 2022 SENSORIS Innovation Platform hosted by ERTICO - ITS Europe. This work is licensed under a Creative Commons
Attribution-NoDerivatives 4.0 International License - https://creativecommons.org/licenses/by-nd/4.0/legalcode.

15

• Map attribute restrictions define restrictions over a particular map attribute. These restrictions are map

provider independent and they are based on URN (Uniform Resource Name). For example, a service cloud

may request data collection in certain road classes. In addition, this type of restriction may be optional,

meaning that if the vehicles do not have the required map version to interpret this field, they can ignore

the restriction.

2.5.6. Collection Trigger

The collection trigger defines in what moment the data collection (action, as described in Section 2.5.7) shall

start. Collection triggers are based on logical expressions. They also define the maximum extents for a

collection action, meaning that collection action shall stop when these extents are reached.

2.5.7. Actions

The actions for job requests define what action shall be performed when the collection trigger conditions are

true. In SENSORIS v1.1.0 actions are data collection actions, which define factors as what data shall be

collected, how much, how often, etc.

2.6. Job Status Message Content

The architectural parts of the SENSORIS job status message are addressed in this section.

The job status message contains the status of job requests. The status can be monitored and analysed by the

requesting vehicle or service cloud. The job status message contains information related to the termination of

a job request message.

Each job has a job state, which is described in Section 2.6.1. In addition a job status message has an optional

textual description which can be used to give more details on the job status, e.g. why a job has been

terminated.

2.6.1. Job States

The possible states of a job are shown in the Unified Modelling Language (UML) state diagram in Figure 11.

Each newly created job is validated first. Validation criteria may cover, amongst others, aspects of privacy,

security, and capability requirements. Detailing validation criteria is out of scope of SENSORIS. If validation of

the job fails or an exception occurs during validation, then the job state is Terminated. If validation of the job

is successful, then the job state is Inactive. If the job validity restrictions and collection trigger conditions are

met, the job state changes from Inactive to Active. If the job validity restrictions and collection trigger

conditions are no longer met, e.g. by leaving the job spatial restriction, then the job state changes back from

Active to Inactive. If the job is complete, e.g. by maxing out the temporal interval of the job or by reaching the

defined total number of extents, then the job state changes from either Inactive or Active to Terminated. If an

exception occurs while the job state is either Inactive or Active, then the job state changes also to

Terminated.

1.4.0 SENSORIS Interface Architecture

16 Copyright © 2017, 2022 SENSORIS Innovation Platform hosted by ERTICO - ITS Europe. This work is licensed under a Creative Commons
Attribution-NoDerivatives 4.0 International License - https://creativecommons.org/licenses/by-nd/4.0/legalcode.

Inactive Active Terminated

Collection trigger met

Collection trigger not met

Job is valid Job is not valid

Collection completed

Exception

Collection completed

Exception

Exception

Validation

Figure 11. Job states

[1] See http://www.bipm.org/en/publications/si-brochure/, 8th edition from 2014

[2] ISO 8855:2011 Road vehicles — Vehicle dynamics holding and road- ability — Vocabulary

[3] See e.g. https://en.wikipedia.org/wiki/Comparison_of_data_serialization_formats for an extensive list

[4] See https://developers.google.com/protocol-buffers/

[5] See https://github.com/google/protobuf/blob/master/src/google/protobuf/any.proto

[6] See https://github.com/google/protobuf/blob/master/src/google/protobuf/wrappers.proto

[7] See https://developers.google.com/protocol-buffers/docs/style

SENSORIS Interface Architecture 1.4.0

Copyright © 2017, 2022 SENSORIS Innovation Platform hosted by ERTICO - ITS Europe. This work is licensed under a Creative Commons
Attribution-NoDerivatives 4.0 International License - https://creativecommons.org/licenses/by-nd/4.0/legalcode.

17

http://www.bipm.org/en/publications/si-brochure/
https://en.wikipedia.org/wiki/Comparison_of_data_serialization_formats
https://developers.google.com/protocol-buffers/
https://github.com/google/protobuf/blob/master/src/google/protobuf/any.proto
https://github.com/google/protobuf/blob/master/src/google/protobuf/wrappers.proto
https://developers.google.com/protocol-buffers/docs/style

3. Privacy Handling

SENSORIS is a standard for the exchange of in-vehicle sensor data. This may also include private, personal,

pseudonymized, or data that can be derived to personal information. Further, these are named "privacy data".

It is the understanding of SENSORIS that privacy data may fall under a governmental protection such as the

GDPR. Furthermore, it is the understanding of SENSORIS, that the transportation of any data (including

personal data) shall be executed in line with the local regulations. By way of example, these can include the

usage of:

• data encryption during transportation

• specific handling at the sending or receiving components of the data

• data owner consent and information (opt-in / opt-out)

The following paragraph contains a list of possible attributes that may require a classification into privacy

data, however, it is not complete.

• Anytime

◦ a single position point if the single position can identify a person (e.g. on private property). A position

point information can be constructed of:

▪ a geographic position (longitude, latitude),

▪ a relative position (x,y,z) from another known reference point, or

▪ a map referenced position e.g. link_id, link_offset

◦ the provision of the information on a specific person or a specific vehicle together with additional

sensor data. Identification could be:

▪ persistent vehicle ID (an identification of a vehicle that does never change over time)

▪ persistent driver ID

◦ a set of vehicle capabilities including hardware or software sensors, that allow to identify a certain

vehicle in a certain region together with additional sensor data. This could include:

▪ information about the capability of a specific source (e.g. front RADAR detector)

▪ Information about the installed hardware (e.g. sensor supplier)

▪ Information about hardware or software version of installed hardware.

• Within one Message

◦ a path of multiple positions including the starting and ending point of a given drive. Each position point

information can be constructed of:

▪ a geographic position (longitude, latitude),

▪ a relative position (x,y,z) from another known reference point, or

▪ a map referenced position e.g. link_id, link_offset

• Within multiple Messages

◦ a temporal id for a person, vehicle, or session where multiple messages could be merged together

where individual messages do not meet the definition of privacy data but the identification of multiple

messages (from the same vehicle) do.

SENSORIS does not specify

• locations to be handled as private properties,

• the maximum number of positions in a path allowed for non-privacy data or the

1.4.0 SENSORIS Interface Architecture

18 Copyright © 2017, 2022 SENSORIS Innovation Platform hosted by ERTICO - ITS Europe. This work is licensed under a Creative Commons
Attribution-NoDerivatives 4.0 International License - https://creativecommons.org/licenses/by-nd/4.0/legalcode.

• local regions where specific regulations apply.

It is the understanding of SENSORIS that the handling of privacy data is to be executed based on local

regulations on a bilateral base between sending and receiving party.

Generally, the SENSORIS specification does not foresee the usage of personal information, such as name,

address, etc. of the driver or owner.

SENSORIS Interface Architecture 1.4.0

Copyright © 2017, 2022 SENSORIS Innovation Platform hosted by ERTICO - ITS Europe. This work is licensed under a Creative Commons
Attribution-NoDerivatives 4.0 International License - https://creativecommons.org/licenses/by-nd/4.0/legalcode.

19

Glossary

Term Description

GNSS Global Navigation Satellite System

ISO International Organization for Standardization

OEM Original Equipment Manufacturer

Protobuf Google Protocol Buffers

SENSORIS Sensor Interface Specification

SI International System of Units

UML Unified Modeling Language

UTC Coordinated Universal Time

WG Working Group

WGS84 World Geodetic System 1984

Table 5. Glossary

1.4.0 SENSORIS Interface Architecture

20 Copyright © 2017, 2022 SENSORIS Innovation Platform hosted by ERTICO - ITS Europe. This work is licensed under a Creative Commons
Attribution-NoDerivatives 4.0 International License - https://creativecommons.org/licenses/by-nd/4.0/legalcode.

	SENSORIS Interface Architecture
	Table of Contents
	1. Introduction
	2. Interface Architecture
	2.1. Reference Systems
	2.2. Message Encoding
	2.3. Conventions
	2.4. Data Message Content
	2.5. Job Request Message Content
	2.6. Job Status Message Content

	3. Privacy Handling
	Glossary

